Aufgabe:
Kann mir jemand kurz bestätigen, ob ich die Theorie hinter Kofidenzintervallen richtig aufgefasst habe?
Problem/Ansatz:
Man nehme an, der Populationsparameter θ und die Verteilung für unseren Fall z.B. der Mittelwert und die Normalverteilung seien gegeben. E(T(X)) = μ. Das Intervall [c1, c2] sei symmetrisch um μ und das 95% Wahrscheinlichkeitsintervall. Wenn man nun eine Stichproben aus der Population zieht und den Mittelwert bildet wird dieser Wert mit 95% Wahrscheinlichkeit im Intervall [c1,c2] liegen. Anders ausgedrückt: Mit 95% Wahrscheinlichkeit liegt der Mittelwert im Intervall [c1,c2].
Da die Normalverteilung, die man aus dem Mittelwert der Stichprobe und gegebener Standardabweichung darstellt, die gleiche Form besitzt nur verschoben ist zu der Normalverteilung N(μ, σ2 ) wird mit 95% Wahrscheinlichkeit der Populationsparameter im 95% Wahrscheinlichkeitsintervall der Normalverteilung mit Mittelwert der Stichprobe liegen.