0 Daumen
97 Aufrufe
Wie löse ich dise Gleichung? Einsetzverfahren?

I 2y + 13x + 7 = 0

II 6y = -39x - 21

Danke im voraus!
Gefragt von

2 Antworten

0 Daumen
Additionsverfahren würde sich anbieten.

I    2y + 13x + 7 = 0  | *3

II   -6y - 39x - 21 = 0

 

I*   6y + 39x + 21 = 0

II -6y - 39x - 21 = 0

 

I* + II    0 = 0

 

-> unendlich viele Lösungen
Beantwortet von 4,3 k

Akelei hat Recht, es gibt keine Lösung, nicht unendlich viele. Mein Fehler

@Thilo87. Nein. Du hattest schon Recht. Beide Gleichungen beschreiben dieselbe Gerade.  Alle Punkte auf dieser Geraden sind Lösungen.

Eine Möglichkeit, die Lösungsmenge anzugeben: L = {(x,y)/ 2y + 13x + 7 = 0}

0 Daumen
Bei dieser Gleichung bietet sich  eher das Additionverfahren an dan 39 ein vielfaches von 13 ist, und nun zuerst sortieren  und dann die  I. Gleichung mit - 3 multiplizieren.

I: - 6y-39x-21=0         | bereits mit -3 multipliziert

II. 6y +39x+21=0        | nun I. und II addieren

-------------------------

      0+0+0=0             , beide Gleichungen sind nicht nur parallel ,sondern auch identisch.

I. nach y umstellen   y= -13/2 x-7/2=- 6,5x-3,5

II. nach y Umstellen  y=-39/6 x-21/6= -6,5x-3,5
Beantwortet von 20 k

Deine Version für L wäre demzufolge L = {(x,y)| y =  -6,5x-3,5 }

Das sind unendlich viele Lösungen und die Menge stimmt mit Thilo87's Lösung überein.

Danke Lu, habe soweit geändert.

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage sofort und kostenfrei

x
Made by a lovely community
...