0 Daumen
557 Aufrufe

Ich soll folgende Ungleichungen beweisen:

Sei f:[a,b]→ℝ konvex. Riemann-Integrierbarkeit von f kann als bekann vorausgesetz werden.

a) $$ 2 f \left( \frac { a + b } { 2 } \right) \leq f ( x ) + f ( a + b - x ) $$

b) $$ f ( x ) \leq \frac { f ( b ) - f ( a ) } { b - a } ( x - a ) + f ( a ) $$

 

Ich weiß nicht, wie ich da heran gehen soll und vor allem was die Konvexität damit zu tun hat bzw. wie man die mit einbringen muss/kann?

von
Vielleicht helfen dir die Skizzen zu konvexen Funktionen weiter.

https://de.wikipedia.org/wiki/Konvexe_Funktion

Ich vermute, bei deinen Ungleichungen wird zum Beispiel der Funktionswert zwischen a und b mit dem Wert auf der Sekante durch (a,f(a)) und (b,f(b)) verglichen. Resp. bestimmte Flächen unter Kurve vs. unter Sekante.

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community