ich knoble grade an einer recht schweren aufgabe in Numerik rum, und komm nicht voran. Ich soll zeigen, mittels vollständiger Induktion: \( L k:=I_{n}-\tau_{k} e_{k}^{T} \)
unter Verwendung von \( \left(\tau_{j} e_{j}^{T}\right)\left(\tau_{k+1} e_{k+1}^{T}\right)=\tau_{j}\left(e_{j}^{T} \tau_{k+1}\right) e_{k+1}^{T}=0, j=1, \ldots, k \)
\( L:=L_{1}^{-1} L_{2}^{-1} \ldots L_{n-1}^{1}=I+\tau \operatorname{le} I^{T}+\tau 2 e 2^{T}+\ldots+\tau n-I e n-I^{T} \)
Bitte beachtet, dass immer nur das e transponiert wird, habe das aber im Formeleditor nicht hinbekommen.