Was sind die Werte der Variablen a, b und c?

0 Daumen
128 Aufrufe
Es soll eine Gleichung der Parabel durch die Punkte A,B und C bestimmt werden.

A (0.5/1), B (-1/4), C (2/7)

Bitte veranschaulichen Sie Ihre Rechnung noch einmal!

 

Mein Ergebnis wäre : a=2,25 ; b=-0,75 ; c=-0,5
Gefragt 27 Sep 2012 von ungujut17

Mit dem Funktionsplot kann man das Resultat einfach überprüfen.

Ich hab mal blau dein Resultat und rot das Resultat von Capricorn und Julian eingegeben.

Der Punkt (2/7) liegt hier leider nicht auf der Skala. Die andern beiden liegen klar auf der roten Parabel.

parabeln

2 Antworten

+1 Punkt

Ich habe a=2, b = -1 und c= 1 bekommen.

Die Gleichung heisst   f(x) = 2x2 - x + 1

Lösungsweg: Die Parabelgleichung 3 * schreiben und jeweils einer der Punkte A,B,C mit x und y einsetzen. Dann das Gleichungssystem mit den Unbekannten a,b und c lösen.

Beantwortet 27 Sep 2012 von Capricorn Experte II
+1 Punkt

Die allgemeine Funktionsgleichung einer Parabel lautet:
f(x) = ax2+bx+c

 

Die Gleichung soll nun durch die drei Punkte gehen, also muss, wenn man für x den den x-Wert des Punktes einsetzt, für f(x) der y-Wert herauskommen. Daraus erhält man drei Gleichungen:

f(0.5)=1: a*0.52+b*0.5+c = 1 (I)

f(-1)=4: a*(-1)2+b*(-1)+c = 4 (II)

f(2)=7: a*22+b*2+c = 7 (III)

Ausgerechnet erhält man die drei Gleichungen:

(I) 0.25a + 0.5b +c = 1

(II) a - b + c = 4

(III) 4a + 2b + c = 7

 

Ich löse solche Gleichungen gerne mit dem Additions/Subtraktionsverfahren, indem ich Gleichungen voneinander abziehe/zueinander addiere. Hier kann man z.B. (II)-(I) und (III)-(II) rechnen, um die beiden folgenden Gleichungen zu erhalten:
(II)-(I):  a-b+c - (0.25a+0.5b+c) = 4-1

0.75a - 1.5b = 3 |*4

3a - 6b = 12 | :3

a - 2b = 4 (IV)

 

(III)-(II): 4a+2b+c -(a-b+c) = 7-4

3a + 3b = 3 | :3

a + b = 1 (V)

Rechnet man nun noch (V)-(IV) erhält man eine Gleichung, in der nur noch b vorkommt:

(V)-(IV): a+b -(a-2b) = 1-4

3b = -3

b = -1

(V)⇒ a = 2

(II)⇒ c = 4+b-a = 1

 

Die Lösung lautet also:
f(x) = 2 x2 - x + 1

Beantwortet 27 Sep 2012 von Julian Mi Experte X
Ok vielen Dank euch beiden!

Mfg ungujut17

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage sofort und ohne Registrierung

x
Made by Memelpower
...