Ellipse:
a2x2+b2y2=1 y=−94x+325, P(12∣3):
a2144+b29=1 9a2=b2⋅(a2−144) b2=a2−1449a2
a2x2+a2−1449a2y2=1
a2x2+9a2y2(a2−144)=1
Implizites Differenzieren:
f′(x)=−fy(x,y)fx(x,y)
fx(x,y)=a22x fy(x,y)=9a22y(a2−144)
f′(x)=−9a22y(a2−144)a22x
−94=−9a22⋅3(a2−144)a22⋅12=−9a2(a2−144)a24=−a2−14436
91=a2−1449
a2=225 b2=225−1449⋅225=25
225x2+25y2=1