V = a*b*c = 1    O = 2ab + 2bc + 2ac  mit   c = 1/ (ab) also 
O(a,b ) = 2ab + 2/a + 2/b 
partielle Ableitungen sind
dO/da = 2b - 2/a^2     dO/db = 2a - 2/b^2 
wenn beide 0 sind, also 
2b - 2/a^2  = 0    und     2a - 2/b^2=0
                                               a = 1 / b^2 
2b - 2 / ( 1 / b^2)^2 = 0 
2b - 2b^4 = 0 
2b ( 1 - b^3) = 0 
Da b ≠ 0 also b=1 .
a= 1 / 1^2 = 1      c = 1 / ( 1*1) = 1.
Also alle = 1.
Der optimale Quader ist der Würfel.