NB:a2x2+b2y2−1=0
HB:r=x+y
Λ=x+y+λ(a2x2+b2y2−1)
∂x∂Λ=1+λ(a22x)
∂y∂Λ=1+λ(b22y)
∂λ∂Λ=a2x2+b2y2−1
---
0=1+λ(a22x)
−1=λ(a22x)
λ=−2xa2 ---
λ=−2yb2
2xa2=2yb2
a22y=b22x
y=a2b2⋅x---
0=a2x2+b2y2−1
0=a2x2+b2(a2b2⋅x)2−1
1=a2x2+b2a4b4⋅x2
1=a2x2+a4b2⋅x2
1=a4x2⋅a2+a4b2⋅x2
a4=x2⋅a2+b2⋅x2
a4=x2⋅(a2+b2)
a2+b2a4=x2
x=a2+b2a2