P(X = 0) = (5/6)3 = 125/216
P(X = 1) = 3·(1/6)·(5/6)2 = 75/216
P(X = 2) = 3·(1/6)2·(5/6) = 15/216
P(X = 3) = (1/6)3 = 1/216
a)
E = 1·75/216 + 2·15/216 + 3·1/216 - 1·125/216 = -17/216 = -0.07870
b)
E = 1·75/216 + 2·15/216 + a·1/216 - 1·125/216 = 0 --> a = 20