Ungleichungen lösen mit Fallunterscheidungen 1 und 2

0 Daumen
40 Aufrufe

Hallo Leute,

klebe an einer Aufgabe, die mir Kopfzerbrechen bereit:

(x-2) * (x-3) > 0

Binomische Ergänzung und daraus folgt:

|x+2,5| +0,25 > 0


Betragsstriche Auflösen durch Fallunterscheidung:


x+2,5 >= 0 |-2,5

x >= -2,5

und

-x-2,5 >= 0 |+2,5

-x >= 2,5 |(-1)

x < -2,5


Bis hierhin richtig? :(

Gefragt vor 6 Tagen von kkc1945

( x-2) * (x-3) > 0

Binomische Ergänzung und daraus folgt:

|x+2,5| +0,25 > 0

wie kommst du hierauf ?

1 Antwort

0 Daumen

(x-2) * (x-3) > 0 Ein Produkt ist positiv, wenn Fall 1 beide Faktoren positiv sind oder Fall 2 beide Faktoren negativ sind.

Fall 1 x>2 und x>3; kurz: x>2

Fall 2 x<2 und x<3; kurz: x<3

Beantwortet vor 6 Tagen von Roland 28 k

Danke für deine Antwort, aber gibt es nicht eine typische Rechnung dazu... also genau das, was ich oben bereits angefangen habe...?

Typische Rechnung: Null auf einer seite des Ungleichheitszeichens. Auf der anderen Seite Faktorenzerlegung (Hier alles schon erledigt), Dann je nach Ungleichheitszeichen überlegen, wann ein Produkt größer oder kleiner Null ist.

Alles klar, danke dir <3

Ein anderes Problem?

Stell deine Frage

Ähnliche Fragen

0 Daumen
3 Antworten
0 Daumen
1 Antwort
0 Daumen
3 Antworten
0 Daumen
2 Antworten

Willkommen bei der Mathelounge! Stell deine Frage sofort und kostenfrei

x
Made by Matheretter
...