f(x, y) = x·y3/(x2 + y2)
f'(x, y) = [y3·(y2 - x2)/(x2 + y2)2, x·y2·(3·x2 + y2)/(x2 + y2)2]
f''(x,y) = [2·x·y3·(x2 - 3·y2)/(x2 + y2)3, - y2·(3·x4 - 6·x2·y2 - y4)/(x2 + y2)3; - y2·(3·x4 - 6·x2·y2 - y4)/(x2 + y2)3, 2·x3·y·(3·x2 - y2)/(x2 + y2)3]
t(x, y) = f'(1, 1)·[x, y] + f(1, 1) = y + 1/2