∑ (k=0 bis n) (k / 2k) = 2 - (n + 2) / 2n
n = 0
∑ (k=0 bis 0) (k / 2k) = 2 - (0 + 2) / 20
0 = 0
n --> n + 1
∑ (k=0 bis n + 1) (k / 2k) = 2 - (n + 1 + 2) / 2n + 1
∑ (k=0 bis n) (k / 2k) + (n + 1) / 2n+1 = 2 - (n + 1 + 2) / 2n + 1
2 - (n + 2) / 2n + (n + 1) / 2n+1 = 2 - (n + 1 + 2) / 2n + 1
2 - (2n + 4) / 2n + 1 + (n + 1) / 2n+1 = 2 - (n + 3) / 2n + 1
2 - (n + 3) / 2n + 1 = 2 - (n + 3) / 2n + 1
wzbw.