0 Daumen
67 Aufrufe

Aufgabe:

Eine Urne enthält je zur Hälfte symmetrische und gefälschte Münzen. Beim Werfen mit einer gefälschten Münze zeigt diese mit einer Wahrscheinlichkeit von 0.9 Kopf an. Eine beliebige Münze aus dieser Urne wird zweimal geworfen.
a) Wie gross ist die Wahrscheinlichkeit, dass die Münze beim ersten Wurf Kopf anzeigt?
b) Wie gross ist die Wahrscheinlichkeit, dass die Münze beim zweiten Wurf Kopf anzeigt?
c) Wie gross ist die Wahrscheinlichkeit, dass die Münze beim zweiten Wurf Kopf anzeigt, wenn man weiss, dass sie beim ersten Wurf ebenfalls Kopf angezeigt hat?
d) Sind die beiden Ereignisse "Kopf beim ersten Wurf" und "Kopf beim zweiten Wurf" unabhängig?


Problem/Ansatz:

Bei der Lösung steht, dass a und b jeweils 0.7 sind. Ich hätte gesagt, es ist 0.9 (oder 0.45), aber verstehe nicht, wo ich falsch liege. Bei c sollte 0.757 herauskommen, ich weiß aber nicht, wie man dies berechnet. D ist "nein", aber ich kennen den Rechenweg nicht.

Vielen, vielen Dank für die Hilfe! Komme einfach nicht weiter....

vor von

2 Antworten

+2 Daumen
 
Beste Antwort

Hallo Tamara,

Zeichnung.png

Bei jeder Frage musst du die Wahrscheinlichkeiten bei jedem Weg ("Pfad"), der zu dem gefragten Ereignis führt, multiplizieren und die Ergebnisse addieren:


a)   P(1. Wurf K)  =  0,5·0,5 + 0,5·0,9  = 0,7

b)  P(2. Wurf K)

                =  0,5·0,5·0,5 + 0,5·0,5·0,5 + 0,5·0,9·0,9 + 0,5·0,1·0,9  = 0,7

Warum sollten sich die beiden Wahrscheinlickeiten auch unterscheiden ?

c)  Sei A = 2. Wurf K  ,  B = 1. Wurf K

Es geht um die bedingte Wahrscheinlichkeit

P(A|B) = P(A∩B) / P(B) =   ( 0,53 + 0,5·0,92) / 0,7  ≈  0,757 

Nachtrag:

d)  die Ereignisse sind  abhängig, sonst müsste  P(A|B) = P(A)  gelten. 

Gruß Wolfgang

vor von 83 k 🚀
+1 Daumen
aber verstehe nicht, wo ich falsch liege

Ich verstehe nicht, was du gerechnet hast.

Bei c sollte 0.757 herauskommen, ich weiß aber nicht, wie man dies berechnet.

Baumdiagramm mit drei Ebenen.

Ebene 1: Eine Münze wird gezogen.

Ebene 2: Die gezogene Münze wird geworfen.

Ebene 3: Die gezogene Münze wird noch ein mal geworfen.

Teile die Wahrscheinlichkeiten für "beim zweiten Wurf Kopf und beim ersten Wurf Kopf" durch die Wahrscheinlichkeit für "beim ersten Wurf ... Kopf ".

vor von 45 k  –  ❤ Bedanken per Paypal

Bei A und B hätte ich einfach 0.9 * 0.5 gerechnet, oder nur 0.9 oder 0.5 * 0.9 * 0.5, aber ich komme nie auf 0.7 (das Ergebnis laut Lösung). Danke für deine Hilfe!

Hallo Tamara,
P(1. Wurf Kopf) = 0,5 * 0,9 + 0,5 * 0,5  = 0,7 

              falls Münze falsch    falls Münze echt

VIELEN VIELEN Dank Wolfgang! Jetzt komm ich mir grad ein bisschen doof vor...

Weißt du zufällig, wie c und d funktionieren? Danke

Bei A und B

Ich finde kein A und kein B in deiner Frage. Meinst du a) und b)?

Die Teilaufgaben a) und b) können ebenfalls mit dem von mir beschriebenen Baumdiagramm gelöst werden.

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage sofort und kostenfrei

x
Made by a lovely community
...