Aufgabe:
Von zwei kugelförmigen Brocken mit gleicher Dichte und verschiedener Masse kennt man jeweils den Durchmesser:
2) Kreuzen Sie die zutreffende Aussage an. [1 aus 5] [m1 ist das Zehnfache von m2] [m1 und m2 stehen im Verhältnis 10000 : 1] [m2= 1000 · π · m1] [m1 und m2 stehen im Verhältnis 100 : 1]
[m1= 1000 · m2] X
Problem/Ansatz:
Lösung ist m1=1000*m2
Ich komme leider nicht auf die Lösung.
Hier fehlen ein paar Angaben / Bild ?
Ich kann leider keine Bilder machen :(
https://www.google.com/url?sa=t&source=web&rct=j&url=http://mathestu…
Beim Pauliberg befindet sich eine Fundstätte von großen Brocken aus vulkanischem Gestein.Für die nachfolgenden Aufgaben wird vereinfacht von kugelförmigen Brocken ausgegangen.Ein bestimmter Brocken hat eine Masse von 4,5 t. Die Dichte des Gesteins beträgt 3000 kg/m3.Die Masse m ist das Produkt aus Volumen V und Dichte ϱ, also m = V · ϱ.1) Berechnen Sie den Durchmesser dieses Brocken.
das war Aufgabe 1
Ja, da habe ich einen Fehler gemacht und inzwischen korrigiert.
Da die Dichte gleich ist, gilt
m153 · 4/3 · π \frac{m_1}{5^3·4/3·π} 53 · 4/3 · πm1 =m20,53 · 4/3 · π \frac{m_2}{0,5^3·4/3·π} 0,53 · 4/3 · πm2 oder m11000 \frac{m_1}{1000} 1000m1 =m21 \frac{m_2}{1} 1m2 . Dann ist m1=1000·m2.
wieso 103
1m ist doch 10 dm
Die Hochzahl 3 kommt aus der Volumenformel für Kugeln.
Bei der volumenformel der Kugel steht r3.. ist das den der Durchmesser auch?
Ist der Durchmesser nicht 2*r
ok danke, wie bist du dann auf m1/1000 gekommen?
m153 · 4/3 · π \frac{m_1}{5^3·4/3·π} 53 · 4/3 · πm1 =m20,53 · 4/3 · π \frac{m_2}{0,5^3·4/3·π} 0,53 · 4/3 · πm2 oder m1125 · 4/3 · π \frac{m_1}{125·4/3·π} 125 · 4/3 · πm1 =m20,125 · 4/3 · π \frac{m_2}{0,125·4/3·π} 0,125 · 4/3 · πm2 auf beiden Seiten im Nenner mal 1000/125 und mal 4/3π.
Dankeschön vielen dank
1m=10dm
1m3=(10dm)3=1000dm3
weist du warum man 103 macht.. bei der volumenformel ist r3
und 1 m ist ja der durchmesser
. Ist durchmesser nicht 2*r?
Hallo Maria,
Wenn d1=10⋅d2d_1=10\cdot d_2d1=10⋅d2 ist, gilt auch r1=10⋅r2r_1=10\cdot r_2r1=10⋅r2.
d1=10⋅d2d_1=10\cdot d_2d1=10⋅d2
2r1=10⋅2r2 ∣ : 22r_1=10\cdot 2r_2 ~~~~|:22r1=10⋅2r2 ∣ : 2
r1=10⋅r2r_1=10\cdot r_2r1=10⋅r2
Genauso ist es bei d3d^3d3 bzw. r3r^3r3:
d13=(10⋅d2)3=1000⋅d23d_1^3=(10\cdot d_2)^3=1000\cdot d_2^3d13=(10⋅d2)3=1000⋅d23(2r1)3=(10⋅2r2)3(2r_1)^3=(10\cdot 2r_2)^3 (2r1)3=(10⋅2r2)3
8r13=1000⋅8r23 ∣ : 88r_1^3=1000\cdot 8r_2^3 ~~~~~|:8 8r13=1000⋅8r23 ∣ : 8r13=1000⋅r23r_1^3=1000\cdot r_2^3r13=1000⋅r23
Ein anderes Problem?
Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos