0 Daumen
416 Aufrufe

Aufgabe:

Bestimmen sie den Kern der Matrix \(A=\begin{pmatrix}1&i&0\\0&0&1\\0&0&0\end{pmatrix}\)


Problem/Ansatz:

Ich habe den Span \( \begin{pmatrix} -i \\    1 \\    1 \end{pmatrix} \)

Jedoch bin ich mir nicht sicher, ob das so richtig ist

Avatar von

1 Antwort

0 Daumen
 
Beste Antwort

Hallo :-)

Mache doch mal eine Probe:

\(A\cdot \begin{pmatrix} -i \\    1 \\    1 \end{pmatrix}=\begin{pmatrix}1&i&0\\0&0&1\\0&0&0\end{pmatrix}\cdot \begin{pmatrix} -i \\    1 \\    1 \end{pmatrix}=\begin{pmatrix}0\\1\\0\end{pmatrix}\),

also nicht der Nullvektor. Du hast dich verrechnet.

Avatar von 15 k

Dann ist \( \begin{pmatrix} 1t  \\ -it \\ 0  \end{pmatrix} \) theoretisch die richtige Antwort oder?

Wie gesagt. Einfach eine Probe machen. Und ja es stimmt.

Ein anderes Problem?

Stell deine Frage

Ähnliche Fragen

1 Antwort
Gefragt 15 Jul 2015 von Gast
1 Antwort
1 Antwort

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community