0 Daumen
477 Aufrufe

Aufgabe:

Find an orthonormal basis for the subspace < V1, V2, V3 > of R4 , where
V1 = (1,1,1,1)Τ , V2 = (3,1,1,3)Τ , V3 = (2,-2,-4,0)Τ  and extend it to an orthonormal basis for R4.


Ansatz/Problem:

Ich kann die Orthonormalbasis für den Unterraum finden, aber ich weiß nicht, wie man diese zu einer Orthonormalbasis für R4 ergänzt. Welchen anderen Vektor muss man wählen? Welche Eigenschaften soll diese Vektor haben?


Avatar von

1 Antwort

0 Daumen
 
Beste Antwort

In order to find an orthonormal basis for the linear subspace generated by v1,v2,v3v_1,v_2,v_3, you may use the Gram-Schmidt process. Bv1,v2,v3={v1,v2,v3}={(12121212),(12121212),(12121212)}\mathcal{B}^*_{\langle v_1,v_2,v_3\rangle }= \{v_1^*,v_2^*,v_3^*\}=\left\{\left(\begin{array}{c}\frac{1}{2}\\\frac{1}{2}\\\frac{1}{2}\\\frac{1}{2}\end{array}\right), \left(\begin{array}{c}\frac{1}{2}\\- \frac{1}{2}\\- \frac{1}{2}\\\frac{1}{2}\end{array}\right), \left(\begin{array}{c}\frac{1}{2}\\\frac{1}{2}\\- \frac{1}{2}\\- \frac{1}{2}\end{array}\right)\right\} If you wish to extend that basis to an orthonormal basis of R4\mathbb{R}^4, you could add any vector v4v_4 that suffices the following two conditions:

(i)(\text{i}) v4,vi=0\langle v_4,v_i^*\rangle =0 where i{1,2,3}i\in \{1,2,3\}.

(ii)(\text{ii}) v4,v4=1\langle v_4,v_4\rangle =1.

Try v4=(0.5,0.5,0.5,0.5)Tv_4=(-0.5,0.5,-0.5,0.5)^T.

Avatar von 28 k

thanks for the answer.
but in (i) <v4, vi> you mean the vectors v1, v2, v3 above or those in B*.

Those in Bv1,v2,v3\mathcal{B}^*_{\langle v_1,v_2,v_3\rangle }. I updated the answer.

Ein anderes Problem?

Stell deine Frage