0 Daumen
1,1k Aufrufe

Aufgabe:

Bestimmen sie alle in 0 stetigen Funktionen f:ℝ -> ℝ

Mit f(u+v)= f(u) + f(v).        Für alle v,u ∈ℝ

Avatar von

2 Antworten

0 Daumen

Vermutung:

f(x) = C · x       (C ∈ ℝ)

Avatar von 3,9 k

Warum ? Wie soll diese Funktion meine erfüllen ?  Würde ich dann statt dem x meine beiden variablen u und v einsetzen ?

Klar.

f(u) = C · u

f(v) = C · v

f(u+v) = C · (u + v) = C · u + C · v = f(u) + f(v)    (Distributivgesetz)

Mit dieser Rechnung ist aber noch nicht bewiesen, dass dies schon alle Funktionen mit der verlangten Eigenschaft sind !

Okay Dankeschön

0 Daumen

Hallo,

der Nachweis, dass nur diese Funktion (siehe die andere Antwort) die Aufgabe löst, könnte so gehen:

1. f(0)=f(0+0)=f(0)+f(0)=2f(0), also f(0)=0

2. f(u+u)=2f(u),, f(3u)=f(2u)+f(u)=3f(u). Induktiv also f(nu)=nf(u) für natürliche n. Damit auch f(n)=nf(1).

3. 0=f(0)=f(u+(-u))=f(u)+f(-u). Also f(-u)=-f(u). Damit f(n)=nf(1) für alle ganzen n.

4. nf(1/n)=f(n/n)=1. Also f(1/n)=1/n. Und damit f(q)=qf(1) für alle rationalen q.

5. Für reelles x wähle rationale Folge (xn),  xnx(x_n), \;x_n \to x. Dann ist

f(xnx)=f(xn)f(x)=xnf(1)f(x)xf(1)f(x) und f(xnx)0f(x_n-x)=f(x_n)-f(x)=x_nf(1)-f(x) \to xf(1)-f(x) \text{ und } f(x_n-x) \to 0

Am Ende wird die Stetigkeit im Nullpunkt gebraucht.

Gruß Mathhilf

Avatar von 14 k

Wir hatten in der Übung x_n-> x für x ->∞

x_n= [nx]n \frac{[nx]}{n} soll eine Gauß Klammer sein.

Wäre nicht dann

f(x)-x_nf(1)= f(x) + f(-x_n) = f(x-x_n) -> f(0)=0

Was willst Du damit sagen/ frsgen?

Also ich meine f(x) - x_nf(1) -> f(x)-xf(1)

Es folgt f(x)-xf(1)=0 also gilt f(x)=c*x mit c=f(1)

Ich denke, das habe ich auch geschrieben. Jedenfalls sind wir uns einig

@Mathhilf:

Danke !

Was würde passieren wenn wir die Stetigkeit weg lassen würden ?

Wir haben die Stetigkeit für den Schluss von den rationalen auf die reellen Zahlen benutzt.

Ein anderes Problem?

Stell deine Frage