0 Daumen
1k Aufrufe

Aufgabe:

Sei (M, ≤) eine Boolesche Algebra und x, y ∈ M. Beweisen Sie:
x ≤ y ⇔ yc ≤ xc


Problem/Ansatz:

Also wir haben eine Boolsche Algebra gegeben, dh:

- (1)  (M, ≤) ist distributiv

- (2)  (M, ≤) hat für jedes x ∈ M ein Komplement y sodass gilt:
            x ∧ y = ⊥  und x ∨ y = T

Mir ist klar ich muss die beidseitige Implikation machen,
einmal x ≤ y annehmen für die eine Richtung
und das andere mal yc ≤ xc für die andere.

Zusätzlich könnte man wegen (2) noch sagen das für jedes beliebige y aus M ein yc exisiert sodass gilt:

y ∧ yc = ⊥  und y ∨ yc = T

dasselbe auch für x:

x ∧ xc  = ⊥  und x ∨ xc = T

also könnte man das irgendwie gleichsetzen
y ∧ yc = x ∧ xc und y ∨ yc = x ∨ xc

aber wie ich das dann im Beweis verwenden soll weiss ich nicht, falls ich das so überhaupt brauche.

kann mir jemand helfen?

Avatar von

Ein anderes Problem?

Stell deine Frage