0 Daumen
507 Aufrufe

Frage:

Man zeige:

(a) Gilt \( Z_{n} \stackrel{\text { d }}{\rightarrow} Z \), so folgt \( Z_{n}=O_{P}(1) \). Hinweis: Portmanteau-Theorem

(b) \( o_{P}(1) O_{P}(1)=o_{P}(1) \)

(c) \( O_{P}\left(a_{n}\right)=a_{n} O_{P}(1) \) für \( a_{n}>0 \) deterministisch.

(d) \( \frac{1}{1+o_{P}(1)}=O_{P}(1) \)

(e) Aus \( Z_{n}=O_{P}\left(a_{n}\right) \) und \( a_{n}=o\left(b_{n}\right) \) für \( a_{n}, b_{n}>0 \) deterministisch folgt \( Z_{n}=o_{P}\left(b_{n}\right) \).


Problem/Ansatz:

Wie kann ich die folgenden Eigenschaften von den stochastischen Landau Symbolen beweisen? Danke!

Avatar von

Ein anderes Problem?

Stell deine Frage

Ähnliche Fragen

1 Antwort
Gefragt 28 Nov 2021 von mathe_dummy
2 Antworten
Gefragt 29 Dez 2024 von alex1888
1 Antwort
Gefragt 7 Feb 2024 von Wima245
1 Antwort
Gefragt 24 Sep 2023 von Colin444
2 Antworten

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community