0 Daumen
94 Aufrufe

Aufgabe:

b) Beweisen Sie die folgenden Aussagen:
   i. Sei \( B \in \mathbb{R}^{n, n} \) orthogonal. Wenn \( \lambda \) ein Eigenwert von \( B \) ist, so ist auch \( \lambda^{-1} \) ein Eigenwert von \( B \).
   ii. Seien \( v_{1}, v_{2}, v_{3} \in \mathbb{C}^{n} \backslash\{0\} \) Eigenvektoren von \( F \in \mathbb{C}^{n, n} \) zu den Eigenwerten \( \lambda_{1}, \lambda_{2}, \lambda_{3} \in \mathbb{C} \). Falls \( v_{3}=v_{1}+v_{2} \), dann gilt \( \lambda_{1}=\lambda_{2}=\lambda_{3} \).


Hilfe beim Beweis bitte

von

2 Antworten

0 Daumen

Hallo,

zu a)

da \( B \in \mathbb{R}^{n\times n}\) orthogonal ist, ist \( B \) invertierbar mit \(B^{-1} = B^T \,\, (*)\)

Sei nun \( \lambda \in \mathbb{R}\setminus\lbrace{0\rbrace}\) ein Eigenwert (ungleich null, da B sonst nicht invertierbar wäre) und \( v \in\mathbb{R}^n\setminus\lbrace{0\rbrace}\) der zugehörige Eigenvektor. Dann gilt

\( Bv = \lambda v \iff v = B^{-1}\lambda v \iff B^{-1}v = \lambda^{-1}v\), womit \(\lambda^{-1}\) ein Eigenwert von \(B^{-1}\) ist. Wegen \((*)\) ist also \(\lambda^{-1}\) ein Eigenwert von \(B^{T}\). Da \( B\) und \(B^T\) die gleichen Eigenwerte haben ist also schließlich \(\lambda^{-1}\) ein Eigenwert von \(B\)

von 5,3 k
0 Daumen

Zu (i):

Es sei \(v\neq 0\) Eigenvektor zu \(\lambda\). Da \(B\) invertierbar ist,

ist \(\lambda\neq 0\).

Es gilt \(v=E_nv=B^TBv=B^T\lambda v=\lambda B^Tv\), d.h.

\(B^Tv=\lambda^{-1}v\). Es ist bekannt, dass eine Matrix und ihre

Transponierte die gleichen Eigenwerte haben, also ist

\(\lambda^{-1}\) Eigenwert von \(B=(B^T)^T\).

Zu (ii):

Wegen \(v_3=v_1+v_2\) gilt

\(\lambda_3v_1+\lambda_3v_2=Fv_3=Fv_1+Fv_2=\lambda_1v_1+\lambda_2v_2\quad (*)\).

Es folgt:

\((\lambda_1-\lambda_3)v_1+(\lambda_2-\lambda_3)v_2=0\).

Wäre nun \(\lambda_1\neq \lambda_3\), dann wäre \(v_1\in Span(v_2)\) und damit \(\lambda_1=\lambda_2\)

Aus \((*)\) würde dann \(\lambda_3(v_1+v_2)=\lambda_1(v_1+v_2)\) folgen, also

\(\lambda_1=\lambda_3\), da \(v_1+v_2=v_3\neq 0\) ist: Widerspruch!

Also ist \(\lambda_1=\lambda_3\). Ebenso zeigt man, dass \(\lambda_2=\lambda_3\) ist.

von 16 k

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community