Aufgabe:
Text erkannt:
b) Which of the following relations is well-founded? Give a justification of why or why not.
i) A relation that is irreflexive, asymmetric, and finite.
ii) The relation R={(n−1,n)∣n∈N}.
iii) The relation RR, where R is defined as above.
iv) The partial order on N×N where (a,b)⪯(c,d) iff max(a,b)≤max(c,d).
v) The divisibility order on N, i.e. R={(a,b)∣a,b∈Z and ∃c(c∈Z∧a⋅c=b)}.
vi) The relation {(uabv,ubav)∣u,v∈{a,b,c}∗}; that is, two words w and w′ are related if we can obtain w′ from w by replacing one occurrence of the subword ab with ba.
Problem/Ansatz:
kann mir hier wer weiterhelfen ob diese Relationen well founded sind und warum?