0 Daumen
207 Aufrufe

Aufgabe:

Text erkannt:

b) Which of the following relations is well-founded? Give a justification of why or why not.
i) A relation that is irreflexive, asymmetric, and finite.
ii) The relation R={(n1,n)nN} R=\{(n-1, n) \mid n \in \mathbb{N}\} .
iii) The relation RR R R , where R \mathrm{R} is defined as above.
iv) The partial order on N×N \mathbb{N} \times \mathbb{N} where (a,b)(c,d) (a, b) \preceq(c, d) iff max(a,b)max(c,d) \max (a, b) \leq \max (c, d) .
v) The divisibility order on N \mathbb{N} , i.e. R={(a,b)a,bZ R=\{(a, b) \mid a, b \in \mathbb{Z} and c(cZac=b)} \exists c(c \in \mathbb{Z} \wedge a \cdot c=b)\} .
vi) The relation {(uabv,ubav)u,v{a,b,c}} \left\{(u a b v, u b a v) \mid u, v \in\{a, b, c\}^{*}\right\} ; that is, two words w w and w w^{\prime} are related if we can obtain w w^{\prime} from w w by replacing one occurrence of the subword ab a b with ba b a .



Problem/Ansatz:

kann mir hier wer weiterhelfen ob diese Relationen well founded sind und warum?

Avatar von

Ein anderes Problem?

Stell deine Frage