\( f(x)=\sqrt{2x} \)
\( F(x)=\int\limits \sqrt{2x} dx\)
Weg über die Substitution:
\( \sqrt{2x}=u|^{2} \)
\( 2x=u^{2} \) \(x= \frac{u^2}{2} \) \( \frac{dx}{du} =u \) \( dx=u du \)
\( \int\limits \sqrt{2x} dx=\int\limits u \cdot u du =\int\limits u^2 du= \frac{1}{3}u^3\)
Rücksubstitution:
\( F(x)=\int\limits \sqrt{2x} dx= \frac{1}{3} u^2\cdot u=\frac{1}{3}\cdot 2x \cdot \sqrt{2x}=\frac{2}{3}\sqrt{2x^3}+C \)