Frage:
Betrachtet wird ein Kegel der Höhe 4; der Radius der Grundfläche beträgt 2. Das Volumen des Kegels kann man auf verschiedene Arten berechnen:
(1) Eine elementar-geometrische Formel für das Kegelvolumen ist "1/3 mal Grundfläche mal Höhe". Welches Volumen V ergibt sich dadurch? V = ?
Antwort:16/3 * pi
Frage:(2) Man kann das Volumen durch Integration horizontaler Schnitte berechnen. Geben Sie an, auf welches Integral diese Berechnungsart führt, wenn man den Kegel mit seiner Grundfläche auf die (x,y)-Ebene stellt. V = ? mit oberer Grenze = ?
Antwort:
(64/3)π als Volumen und 4 als obere Grenze
Frage:(3) Man kann das Volumen durch Integration in Polarkoordinaten berechnen. Geben Sie an, auf welches Integral diese Berechnungsart führt: V = ? mit oberer Grenze = ?
Antwort:10 pi mit oberer Grenze 2.
Ich weiß leider nicht, was falsch ist. Ich glaube nicht, dass alles richtig. Könnte eine(r) bitte ganz kurz drüberschauen? Danke.