0 Daumen
618 Aufrufe

Zeigen Sie, dass 2 \sqrt{2} wirklich existiert

Wie beweist man die existenz von 2 \sqrt{2} ?

Avatar von

Man kann die Existenz nicht aus dem nichts beweisen. Wie habt ihr die reellen Zahlen eingeführt?

1 Antwort

0 Daumen

Die Länge der Diagonale im Einheitsquadrat ist (nach Pythagoras) 2 \sqrt{2} .

Avatar von 124 k 🚀

Ich glaub mit einem Flächeninhalt.

Also mit Quadraten mit der FLäche 1:

blob.png


Du hast recht: Zwei Quadrate der Fläche 1 werden diagonal zerschnitten und zu einem Quadrat der Fläche 2 zusammengesetzt. Das Quadrat der Fläche 2 hat eine Seitenlänge von 2 \sqrt{2} . Pythagoras führt zum gleichen Ergebnis.

Gibt es im internet auch ein ähnliches Beispiel?

ich habe nichts gefunden

Was meinst du mit einem ähnlichen Beispiel? √2 in anderer Darstellung oder eine Wurzel aus einer anderen natürlichen Zahl?

Ein anderes Problem?

Stell deine Frage