\(x^2 - 8x + 25=| -25\)
\(x^2 - 8x =-25\) quadratische Ergänzung:
\(x^2 - 8x+(\frac{8}{2})^2 =-25+(\frac{8}{2})^2\) 2.Binom:
\((x - \frac{8}{2})^2 =-9\) Nun gilt: \((-1=i^2\)
\((x - 4)^2 =9i^2|±\sqrt{\\} \)
1.)
\(x - 4=3i \)
\(x_1=4+3i \)
2.)
\(x - 4=-3i \)
\(x_2=4-3i \)
Produkt von Linearfaktoren:
\(x^2 - 8x + 25=[x-(4+3i)][x-(4-3i)] \)