√(2x+1) - √(x-3) = 2                         | + √(x-3)
√(2x+1) = 2 + √(x-3)                        |²
2x+1 = 4 + 2(2√(x-3)) + x - 3          | - 2x - 1
0 = 4 + 2(2√(x-3)) + x - 3 - 2x - 1   | Zusammenfassen
0 = - x + (4√(x-3))                            | - (4√(x-3))
- (4√(x-3)) = - x                                 | * (-1)
(4√(x-3)) = x                                      |²
16(x-3) = x²                                       | Ausmultiplizieren
16x-48 = x²                                       | - 16x + 48
x² - 16x + 48 = 0                              | pq-Formel anwenden
 
x1,2 = 16/2 ± √((16²/4) - 48)
x1,2 = 8 ± √(64 - 48)
x1,2 = 8 ± √16
x1,2 = 8 ± 4
L = {4;12}