∫ COS(x)·e-x dx
Partielle Integration
= ∫ COS(x)·e-x dx
= SIN(x)·e-x - ∫ SIN(x)·(- e-x) dx
= SIN(x)·e-x + ∫ SIN(x)·e-x dx
∫ SIN(x)·e-x dx
Nochmals partielle Integration
∫ SIN(x)·e-x dx
= - COS(x)·e-x - ∫ - COS(x)·(- e-x) dx
= - COS(x)·e-x - ∫ COS(x)·e-x dx
∫ COS(x)·e-x dx = SIN(x)·e-x + ∫ SIN(x)·e-x dx
∫ COS(x)·e-x dx = SIN(x)·e-x - COS(x)·e-x - ∫ COS(x)·e-x dx
2·∫ COS(x)·e-x dx = SIN(x)·e-x - COS(x)·e-x
2·∫ COS(x)·e-x dx = e-x·(SIN(x) - COS(x))
∫ COS(x)·e-x dx = 1/2·e-x·(SIN(x) - COS(x))