0 Daumen
487 Aufrufe

Gegeben sind die vier Kraftvektoren im Raum:

F1=(167)T NF2=(329)T NF3=(121)T NF4=(205)T N \overline{F_{1}}=\left(\begin{array}{lllll}-1 & -6 & -7\end{array}\right)^{T} \mathrm{~N} \\ \overline{F_{2}}=\left(\begin{array}{lll}3 & 2 & 9\end{array}\right)^{T} \mathrm{~N} \\ \overline{F_{3}}=\left(\begin{array}{llll}1 & -2 & 1\end{array}\right)^{T} \mathrm{~N} \\ \overline{F_{4}}=\left(\begin{array}{lll}2 & 0 & 5\end{array}\right)^{T} \mathrm{~N}

Liegen die vier Kraftvektoren in einer Ebene?


Ist das dasselbe wie Vektoren, also kann ich das als Linearkombination darstellen?

Avatar von

1 Antwort

0 Daumen
 
Beste Antwort

Wir können das Spatprodukt (Determinante) dreier Vektoren nehmen um zu sehen ob sie einen Raum aufspannen

[-1, -6, -7] ⨯ [3, 2, 9] ⋅ [1, -2, 1] = 0

Damit liegen die ersten Drei Vektoren in einer Ebene. Ich erstze den dritten durch den vierten

[-1, -6, -7] ⨯ [3, 2, 9] ⋅ [2, 0, 5] = 0

Auch diese liegen in einer Ebene. Damit liegen alle Vektoren in einer Ebene.

Avatar von 493 k 🚀
Diese Argumentation ist nur dann schlüssig, wenn zusätzlich nachgewiesen wird, dass die ersten beiden Vektoren nicht auf einer Geraden liegen. Dieser Nachweis fehlt.

Ein anderes Problem?

Stell deine Frage