∫ e- c·x·COS(b·x) dx = -1/c·e- c·x·COS(b·x) - ∫ - 1/c·e- c·x·(-SIN(b·x))·b dx
= -1/c·e- c·x·COS(b·x) - ∫ b/c·e- c·x·SIN(b·x) dx
∫ b/c·e- c·x·SIN(b·x) dx = -b/c2·e- c·x·SIN(b·x) - ∫ -b/c2·e- c·x·COS(b·x)·b dx
= -b/c2·e- c·x·SIN(b·x) + ∫ b2/c2·e- c·x·COS(b·x) dx
∫ e- c·x·COS(b·x) dx = -1/c·e- c·x·COS(b·x) + b/c2·e- c·x·SIN(b·x) - ∫ b2/c2·e- c·x·COS(b·x) dx
(1 + b2/c2)·∫ e- c·x·COS(b·x) dx = e- c·x·(b/c2·SIN(b·x) - 1/c·COS(b·x))
∫ e- c·x·COS(b·x) dx = e- c·x·(b/c2·SIN(b·x) - 1/c·COS(b·x)) / (1 + b2/c2)
∫ e- c·x·COS(b·x) dx = e- c·x·(b·SIN(b·x) - c·COS(b·x))/(b2 + c2)