0 Daumen
1,1k Aufrufe

hat jemand ein paar Tipps für mich?

Besonders macht mir die c) zu schaffen!

a)ez+1=0exiy+1=0MeineIdee : exiy=i2(FallsdaseinTrickwa¨re?)=1aberweiterumformenweißichnicht...b)ez+i=0ex+iy=iIchhabemiru¨berlegt,dassmandasjaauchsoschreibenko¨nnte : eiy=cos(φ)+isin(φ)=ialsomusscos(φ)=0undmusssin(φ)=1sein.BeicosmussφalsoeinVielfachesvonΠ2+kΠundbeisinmussφeinVielfachesvon3Π2+k2Πsein.c)sin(z)=iΠsin(x+iy)=iΠIchhabeumgeformtundkamaufdieseIdee : iΠ=sin(x)cosh(y)+icos(x)sinh(y)DementsprechendmussderersteTerm0seinundcos(x)sinh(y)=Πergeben.SinddieseU¨berlegungenzuverwerfen?Dankefu¨reureHilfe!Helenuma)\quad \\ \\ { e }^{ -z }\quad +\quad 1\quad =\quad 0\quad \\ { e }^{ -x-i*y }\quad +\quad 1\quad =\quad 0\\ \\ \\ \\ Meine\quad Idee:\quad { e }^{ -x-i*y }\quad =\quad { i }^{ 2 }\quad (Falls\quad das\quad ein\quad Trick\quad wäre?)\quad =\quad -1\\ aber\quad weiter\quad umformen\quad weiß\quad ich\quad nicht...\\ \\ \\ \\ \\ b)\quad \\ \\ { e }^{ z }\quad +\quad i\quad =\quad 0\\ { e }^{ x+i*y }\quad =\quad -i\\ \\ \\ \\ \\ Ich\quad habe\quad mir\quad überlegt,\quad dass\quad man\quad das\quad ja\quad auch\quad so\quad schreiben\quad könnte:\\ \\ \\ \\ { e }^{ i*y }\quad =\quad cos(\varphi )\quad +\quad i*sin(\varphi )\quad =\quad -\quad i\\ also\quad muss\quad cos(\varphi )\quad =\quad 0\\ und\quad muss\quad sin(\varphi )\quad =\quad -1\quad sein.\quad \\ \\ \\ \\ \\ Bei\quad cos\quad muss\quad \varphi \quad also\quad ein\quad Vielfaches\quad von\quad \frac { \Pi }{ 2 } +k*\Pi \\ und\quad bei\quad sin\quad muss\quad \varphi \quad ein\quad Vielfaches\quad von\quad \frac { 3*\Pi }{ 2 } +k*2\Pi \quad sein.\\ \\ \\ \\ \\ \\ c)\\ \\ \\ sin(z)\quad =\quad i*\Pi \\ sin(x+i*y)\quad =\quad i*\Pi \\ \\ \\ \\ Ich\quad habe\quad umgeformt\quad und\quad kam\quad auf\quad diese\quad Idee:\\ \quad i*\Pi \quad =\quad -sin(x)*cosh(y)\quad +\quad i*cos(x)*sinh(y)\\ \\ \\ \\ Dementsprechend\quad muss\quad der\quad erste\quad Term\quad 0\quad sein\quad und\\ cos(x)*sinh(y)\quad =\quad \Pi \quad ergeben.\quad \\ \\ \\ \\ \\ \\ \\ \\ Sind\quad diese\quad Überlegungen\quad zu\quad verwerfen?\\ Danke\quad für\quad eure\quad Hilfe!\\ Helenum

Avatar von

Ist das bei c) ein pi, also π ?

Warum nutzt du keine Polarkoordinaten?

Hallo Lu,

sowohl bei b als auch bei c soll das ein π  sein! Ich hatte nur dieses eine Symbol dafür gefunden!

Habe ich mit der Umformung schon Polarkoordinaten verwendet? Oder sprichst du das auf a an?

LG

Helenum

Bei b) hast du mich schon bei der ersten Umformung verloren.

Annahme, die würde stimmen: https://www.wolframalpha.com/input/?i=e%5Ez+%3D+-i

Bild Mathematik


Ich wollte nur sichergehen, dass ich in der Überschrift nichts verkehrt gemacht habe.

EDIT: Habe in deiner ersten Zeile bei b) ein i draus gemacht. (vgl. Kommentar gleich unten)

oh nein, wie peinlich! Du hast natürlich Recht!

Es ist ez + i = 0


Ich habe den Überblick beim Formeleditor verloren!

Danke, dass du so aufmerksam bist und ich schaue mir gleich mal die Lösung an!

LG

1 Antwort

0 Daumen

bei a kannst du doch das z lassen und verwendest deinen

Trick und die 3. binomi.

e -z = i^2
e -z - i^2 = 0
(e -0,5z - i) * (e -0,5z + i) = 0

(e -0,5z - i) = 0     oder  (e -0,5z + i) = 0

e -0,5z = i   =  e i*pi/2     oder   ........

-0,5 z = i*pi/2            .............

z = - i*pi        ................

Avatar von 289 k 🚀

Ein anderes Problem?

Stell deine Frage