f(x) = 1/4·(x2 - 2·LN(x))
f'(x) = x/2 - 1/(2·x)
(f'(x))2 = x2/4 + 1/(4·x2) - 1/2
1 + (f'(x))2 = x2/4 + 1/(4·x2) + 1/2
√(1 + (f'(x))2) = ✓(x2/4 + 1/(4·x2) + 1/2) = (x2 + 1)/(2·x) = x/2 + 1/(2·x)
L(x) = LN(x)/2 + x2/4
L(e) - L(1) = (LN(e)/2 + e2/4) - (LN(1)/2 + 12/4) = e2/4 + 1/4 = 2.097