Zeigen Sie Untergruppe und Gruppe isomorph ist

0 Daumen
134 Aufrufe

Ich weiß nicht wie man da Anfängt bzw. vorgeht - vielleicht kann mir ja jemand weiter helfen - vielen Dank !

Bild Mathematik

Gefragt 28 Nov 2015 von Gast hj2044

1 Antwort

0 Daumen

zeige: Multiplikation zweier El. von W gibt wieder eines, etwa so

(cos( 2k*pi/d) + i* sin( 2k*pi/d) )*(cos( 2h*pi/d) + i* sin( 2h*pi/d) )

= cos( 2k*pi/d)*(cos( 2h*pi/d) + (cos( 2k*pi/d)* i* sin( 2h*pi/d)

   + i* sin( 2k*pi/d)*cos( 2h*pi/d) - sin( 2k*pi/d)*sin( 2h*pi/d)

= wegen Add. theorem

cos( 2(k+h)*pi/d) + i* sin( 2(k+h)*pi/d)also wieder in W.

ebenso ist das neutrale El.   1 + i*0 in W ( nämlich für k=0).

und zu jedem  cos( 2k*pi/d) + i* sin( 2k*pi/d) auch das Inverse

cos( 2(-k)*pi/d) + i* sin( 2(-k)*pi/d).

b) Die Abb,  F die jedem  cos( 2k*pi/d) + i* sin( 2k*pi/d)

das k zuordnet ist der Isomorphismus.

Ist wohldefiniert, da für k und  k+n*d  die gleichen Elemente entstehen;

denn cos( 2(k+nd)*pi/d) + i* sin( 2(k+nd)*pi/d)

= cos( 2k*pi/d + 2nd*pi/d ) + i* sin( 2k*pi/d +2nd*pi/d)

= cos( 2k*pi/d ) + i* sin( 2k*pi/d ) wegen der 2pi-Periodizität

von sin und cos.

Homomorphie folgt aus der Überlegung von a)

Denn F (cos( 2k*pi/d) + i* sin( 2k*pi/d) )*(cos( 2h*pi/d) + i* sin( 2h*pi/d) )

= F ( cos( 2(k+h)*pi/d) + i* sin( 2(k+h)*pi/d) )

=  k+h

= F (cos( 2k*pi/d) + i* sin( 2k*pi/d))+ F (cos( 2h*pi/d) + i* sin( 2h*pi/d))

Injektivität folgt aus der ( mod 2pi) eindeutigen Darstellung mit

cos( 2k*pi/d) + i* sin( 2k*pi/d)

und Surjekivität durch betrachten von

cos( 2k*pi/d) + i* sin( 2k*pi/d)  für k=0 bis d-1.

Beantwortet 29 Nov 2015 von mathef 123 k
cool, vielen dank !

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage sofort und kostenfrei

x
Made by Matheretter
...