0 Daumen
775 Aufrufe

Wie kann man allgemein zeigen, dass in (G,*) [Der Stern ist eine Verknüpfung und kein Malzeichen]

e = e−1

und

(g−1)−1 = g für alle g ∈ G

gilt? In der Überschrift ist es nicht ganz so schön. Mir fällt es schwer, das formal zu zeigen.


LG

Avatar von

1 Antwort

0 Daumen
 
Beste Antwort

das erste folgt direkt aus der Neutralität von ee:

e1=ee1=e e^{-1} = e * e^{-1} = e

und das Zweite bspw. aus der Assoziativität der Verknüpfung *:

g=ge=g(g1(g1)1)=(gg1)(g1)1=e(g1)1=(g1)1 g = g * e = g * (g^{-1} * (g^{-1})^{-1}) = (g * g^{-1} )* (g^{-1})^{-1}= e * (g^{-1})^{-1} = (g^{-1})^{-1}

Gruß

Avatar von 23 k
Erstmal vielen Dank, beim ersten war meine Idee dann wenigstens richtig! Nur kam mir das zu einfach vor..

Beim zweiten versteh ich nicht ganz, wie du von

g * e  auf

g * (g−1 * (g−1)−1) kommst.

e kann man als g * g−1 darstellen also müsste dort nicht eigentlich

g * (g * g−1) stehen?
Dass e=gg1e = g * g^{-1} nach Def. gilt benutzen wir ja direkt danach.
(g1)1(g^{-1})^{-1} soll ja das inverse Element zu g1g^{-1} sein, deswegen gilt natürlich auch nach Def.e=g1(g1)1 e = g^{-1}*(g^{-1})^{-1}

Oh, das macht Sinn! Also kann man e als jedes beliebiges Element verknüpft mit seinem Inversen darstellen. Danke nochmal, jetzt ist alles verständlich!

Ja, so sind inverse Elemente in einer Gruppe definiert ;). Gerne.

Ich hab nur nicht daran gedacht, dass g-1 auch ein Inverses haben kann mit (g-1)-1. Ist natürlich vollkommen logisch. Erstsemester Mathe, ich hoffe das kommt irgendwann von alleine :p

Ein anderes Problem?

Stell deine Frage