eher wohl so:
e i*3x = cos(3x) + i*sin(3x) 
vergleichen mit  (e ix )^3 = (  cos(x) + i*sin(x)) ^3 
                                        = cos(x)^3 + 3*cos(x)^2 *i*sin(x) + 3* cos(x)*i^2 * sin(x)^2 + i^3 * sin(x)^3 
                                     = cos^3(x)  + 3i*sin(x) cos^2(x) - 3 cos(x)sin^2(x) - i* sin(x)^3 
                                    = cos^3(x)  + 3i*sin(x) cos^2(x) - 3 cos(x)(  1 - cos^2(x))  - i*sin^3(x) 
= cos^3(x) - 3 cos(x)(  1 - cos^2(x))  - i*sin^3(x)  + 3i*sin(x) cos^2(x) 
= cos^3(x) - 3 cos(x) + 3 cos^3(x) + i * ( - sin^3(x)  + 3sin(x) cos^2(x)) 
= 4cos^3(x) - 3 cos(x)  + i * .....
also ist der Realteil  4cos^3(x) - 3 cos(x)  im Verhleich mit oben cos(3x)