a) ln zur Basis e, log zur Basis 10
ln(x2)+log(1/2x)<=1
2∗ln(x)+log(1/2)+log(x)<=1
2∗ln(x)+ln(x)/ln(10)<=1−log(1/2)
(2+1/ln(10))∗ln(x)<=1−log(1/2)
ln(x)<=[1−log(1/2)]/(2+1/ln(10))
x<=exp([1−log(1/2)]/(2+1/ln(10)))=1.7065
Weil der Logarithmus nur für x>0 definiert ist, lautet das Endergebnis:
0<x<=1.7065
b)
ln(2x)+log(1/2x)<=1
ln(2)+ln(x)+log(1/2)+log(x)<=1
ln(x)+ln(x)/ln(10)<=1−ln(2)−log(1/2)
(1+1/ln(10))∗ln(x)<=1−ln(2)−log(1/2)
ln(x)<=[1−ln(2)−log(1/2)]/(1+1/ln(10))
x<=exp([1−ln(2)−log(1/2)]/(1+1/ln(10)))=1.52778
Endergebnis:
0<x<=1.52778