Also log ist wohl zur Basis 10.
Dann gilt  log(x) = log(e)*ln(x)  also 
log(x) + ln (x) < 1 
⇔     log(e)*ln(x)  + ln (x) < 1 
⇔    ln(x) * ( log(e)  + 1) < 1 
⇔    ln(x) * ( log(e)  + log(10) ) < 1 
⇔    ln(x) * ( log(10*e) ) < 1 
⇔    ln(x)   <    < 1 / log(10*e) = 
⇔    x  <    e  1 / log(10*e)    ≈   2,008
Also gilt die Ungleichung für alle x < 2,008.