x4 + 2·x3 - 7·x2 - 20·x - 12 = (x + 1)·(x - 3)·(x + 2)2
x3 - 3·x2 - x + 3 = (x + 1)·(x - 1)·(x - 3)
f(x) = (x + 1)·(x - 3)·(x + 2)2 / ((x + 1)·(x - 1)·(x - 3))
Hebbare Definitionslücke bei x = - 1 und x = 3
fh(x) = (x + 2)2 / (x - 1) = (x2 + 4·x + 4) / (x - 1)
Asyptote
(x2 + 4·x + 4) / (x - 1) = x + 5 + 9/(x - 1) --> p(x) = x + 5
Skizze:
Plotlux öffnen f1(x) = (x+2)2/(x-1)f2(x) = x+5Zoom: x(-24…24) y(-16…16)