exp(x) = ex
Taylorpolynom  n-ten Grades zur Funktion f  im Entwicklungspunkt a:
Tnf(x,a) =  \(\sum\limits_{k=0}^{n} \) f(k)(a) / k! · (x - a)k 
n= 4, a = 0 (Entwicklungspunkt)
T4f(x,0) = \(\sum\limits_{k=0}^{4} \) f(k)(0) / k! · (x - 0)k 
= f(0) + f '(0) · x +  f "(0) / 2 · x2 + f '''(0) / 6 · x3 + f(4)(0) / 24 · x4   (#)
f(x) = exp(x2) - e6x               →  f(0) = 0
f '(x) = 2·x·exp(x2) - 6·e6x            → f '(0) = -6
f "(x) = exp(x2) ·(4·x2 + 2) - 36·e6x       → f "(0) = -34
f '''(x) = 4·x·exp(x2) ·(2·x2 + 3) - 216·e6x       → f '''(0) = -216
f(4) (x) =  4·exp(x2) ·(4·x4 + 12·x2 + 3) - 1296·e6x   →  f(4)(0) = -1284
Werte der Ableitungen  oben (#) einsetzen
T4(x,0) = - 6x - 17x2 - 36 · x3 - 107/2 · x4
Gruß Wolfgang