3·x2 + 10·x·(y + 1) + 7·y2 + 14·y = 0 ∧ 5·x2 + x·(14·y + 14) = 0
5·x2 + x·(14·y + 14) = 0 ⇔ x = - 14/5 · (y + 1) ∨ x = 0
3·x2 + 10·x·(y + 1) + 7·y2 + 14·y = 0 ∧ x = - 14/5 · (y + 1)
⇒ 7/25 · (9·y2 + 18·y - 16) = 0 ⇔ y = - 8/3 ∨ y = 2/3
3·x2 + 10·x·(y + 1) + 7·y2 + 14·y = 0 ∧ x = 0
⇔ 7·y2 + 14·y = 0 ⇔ y = 0 ∨ y = - 2
→ (x|y) ∈ ( 14/3 | - 8/3) , ( -14/3 / 2/3) , (0|-2) , (0|0) }
Gruß Wolfgang