0 Daumen
1,8k Aufrufe

Hey:)


Könnt ihr mir bei der Aufgabe helfen??

Bild Mathematik

Avatar von

Wäre doch einfach:

(cos(2x4)- cos(x4))/ (x4) und das würde ja für x gegen 0. null durch null heißen, also l'Hospital 

(2x3* cos(2x4)-4x3* cos(x4))/4x3

Ist wieder null durch null also ableiten...

Passt das so?

1 Antwort

0 Daumen
 
Beste Antwort

Der Mittelwertsatz sagt abf(x)dx=(ba)f(ξ)\int_a^bf(x)\,dx=(b-a)f(\xi) mit einem ξ[a,b]\xi\in[a,b], falls ff stetig ist. Im Beispiel also x42x4cos2ydy=x4cos2η\int_{x^4}^{2x^4}\cos^2y\,dy=x^4\cos^2\eta mit einem η\eta, für das x4η2x4x^4\le\eta\le2x^4 gilt. Kannst Du das damit zu Ende bringen?

Avatar von

ich versteh, was du gemacht hast. Nur weiß ich leider nicht wie es weitergehen würde

Du setzt x4cosη2x^4\cos\eta^2 für das Integral ein, was denn sonst? limx01x4x42x4cosy2dy=limx0cosη2\lim_{x\to0}\frac{1}{x^4}\int_{x^4}^{2x^4}\cos y^2\,dy=\lim_{x\to0}\cos\eta^2

Und das ergibt 0

Nie im Leben.


Ich hab doch x4 *cos n und für x gegen 0 hab ich 0*cos n also 0

1 oder? 


Sorry, hab übersehen, dass x4 verschwindet

Wie zeige ich, dass der Grenzwert gehen 1 geht?

Sitze gerade vor der selben Aufgabe :D (HM2 bei PD Dr. W.-P. D.).

Die Aufgabe wird, wie hier von Fakename bereits richtig vorgeführt, mit dem Mittelwertsatz der Integralrechnung gelöst (bei uns im Skript Satz 18.11 für den Fall, dass g ≡ 1).

Wie wir wissen gilt ξ ∈ [x4, 2x4], anders formuliert: x4 ≤ ξ ≤ 2x4. Da wir nun den Grenzwert für x gegen 0 suchen, muss für ξ gelten, dass 0 ≤ ξ ≤ 0 ist, was gleichbedeutend ist mit ξ = 0. Also erhält man insgesamt cos(0) = 1 als Ergebnis.

Ein anderes Problem?

Stell deine Frage