0 Daumen
52 Aufrufe

Wenn 0 kein .... ist, ist L injektiv.

-> Kern (L)={Nullvektor}

Sagt man Eigenwert oder Eigenvektor?

Gefragt von 1,3 k

1 Antwort

0 Daumen

Wenn 0 kein Eigenwert ist, ist L injektiv.

-> Kern (L)={Nullvektor}

Man sagt Eigenwert. Denn die Vektoren (ungleich dem Nullvektor),

 für die L(v) = 0*v = Nullvektor ist, sind dann die 

Eigenvektoren zum Eigenwert 0, und

wenn es davon keine gibt, ist  Kern (L)={Nullvektor} .

Beantwortet von 133 k

Vielen Dank.

Vielleicht kannst Du das bitte anders formulieren. Mir ist das nicht ganz klar.

Man sagt Eigenwert. Denn die Vektoren (ungleich dem Nullvektor),

 für die L(v) = 0*v = Nullvektor ist, sind dann die 

Eigenvektoren zum Eigenwert 0, und

wenn es davon keine gibt, ist  Kern (L)={Nullvektor}

Ist v ein Vektor ( ungleich dem Nullvektor) 

für den gilt  L(v) = 0*v 

dann ist v ein Eigenvektor zum Eigenwert 0.

Vielen Dank.
Dann gibt es doch unendlich viele Eigenvektoren oder?
Was muss denn rauskommen, wenn man 0*v rechnet?
Das ergibt ja immer der Nullvektor...

Eigenvektoren gehören immer zu einem 

Eigenwert. Da gibt es in der Tat immer

unendlich viele. Die bilden den

sog. Eigenraum zum Eigenwert ..

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage sofort und kostenfrei

x
Made by a lovely community
...