Aa(t) = e- a·t·(t + 7.5) + 7.5 ; a > 0 und t > 0
a)
Aa'(t) = e- a·t·(1 - a·(t + 7.5))
Aa''(t) = e- a·t·(a2·(t + 7.5) - 2·a)
Extrempunkt Aa'(t) = 0
e- a·t·(1 - a·(t + 7.5)) = 0 --> t = 1/a - 7.5
Aa(1/a - 7.5) = e7.5·a - 1/a + 7.5
Wendepunkt Aa''(t) = 0
e- a·t·(a2·(t + 7.5) - 2·a) = 0 --> t = 2/a - 7.5
b)
Ortskurve der Extrempunkte
1 - a·(t + 7.5) = 0 --> a = 1/(t + 7.5)
y = e- t/(t + 7.5)·(t + 7.5) + 7.5
c)
lim (x --> ∞) e- a·t·(t + 7.5) + 7.5 = e- a·∞·(∞ + 7.5) + 7.5 = 0 + 7.5 = 7.5