0 Daumen
38 Aufrufe

Hallo,


Ich soll alle Geraden finden, die eine Ebene nicht schneiden und durch einen Punkt gehen.

Leider fehlt mir ein Lösungsansatz, wenn jemand kurz die Schritte nennen könnte die gemacht werden müssen wäre das sehr hilfreich.


LG

Gefragt vor von

1 Antwort

0 Daumen
 
Beste Antwort

Hallo nomads,

g:  \(\vec{x}\) = \(\vec{a}\) + r * \(\vec{u}\)

\(\vec{a}\)  ist der Ortsvektor deines gegebenen Punktes.

g muss zu E echt parallel sein. Deshalb muss der Richtungsvektor \(\vec{u}\) auf dem Normalenvektor \(\vec{n}\) von E senkrecht stehen.

Es muss also  \(\vec{n}\) * \(\vec{u}\) = 0  gelten.

Wenn der gegebene Punkt nicht in E liegt, schneidet g die Ebene E nicht.

Gruß Wolfgang

Beantwortet vor von 65 k

Danke für deine Hilfe

immer wieder gern :-)

Ein anderes Problem?

Stell deine Frage

Ähnliche Fragen

Willkommen bei der Mathelounge! Stell deine Frage sofort und kostenfrei

x
Made by a lovely community
...