\(f(x) =  \frac{2}{t} x^3 - 2x^2 +  \frac{t}{2} x\)
Berechne die Hoch- und Tiefpunkte in Abhängigkeit von t.
\(f'(x) =  \frac{6}{t} x^2 - 4x +  \frac{t}{2} \)
\(\frac{6}{t} x^2 - 4x +  \frac{t}{2}=0|\cdot \frac{t}{6}\)
\(x^2 - \frac{2t}{3}x =-\frac{t^2}{12}\)  quadratische Ergänzung:
\(x^2 - \frac{2t}{3}x+( \frac{t}{3})^2=-\frac{t^2}{12}+( \frac{t}{3})^2\)     2.Binom:
\((x - \frac{t}{3})^2=\frac{t^2}{36}|±\sqrt{~~}\) 
1.)
\(x - \frac{t}{3}=\frac{t}{6}\)
\(x_1  =\frac{t}{2}\)
\(f(\frac{t}{2}) =  \frac{2}{t} (\frac{t}{2}) ^3 - 2(\frac{t}{2}) ^2 +  \frac{t}{2} (\frac{t}{2})=0 \)
2.)
\(x - \frac{t}{3}=-\frac{t}{6}\)
\(x_2  =\frac{t}{6}\)
\(f(\frac{t}{6}) =  \frac{2}{t} (\frac{t}{6})^3 - 2(\frac{t}{6})^2 +  \frac{t}{2} (\frac{t}{6})=\frac{t^2}{27}\)
Art der Extremwerte:
\(f''(x) =  \frac{12}{t} x - 4 \)
\(f''(\frac{t}{2}) =  \frac{12}{t} (\frac{t}{2}) - 4 =6-4=2>0\)    Mimimum
\(f''(\frac{t}{6}) =  \frac{12}{t} (\frac{t}{6}) - 4=2-4=-2<0 \)   Maximum