+3 Daumen
815 Aufrufe

Hab mal ne ganz blöde Frage, wie ermittelt man eigentlich nochmal dimK(V) einer Matrix?

zb habe ich folgende Aufgabe:

Suche ein geeignetes Beispiel unter diesen Voraussetzungen:

dimK(V) = 4 und | Spek(α)| = 2. Bei einem der Eigenwerte stimmen die algebraische und die geometrische Vielfachheit überein, bei dem anderen nicht!

Meine Überlegung wäre jetzt

(1000000000000000000000000) \begin{pmatrix} 1 & 0&0&0&0 \\ 0 & 0&0&0&0\\0 & 0&0&0&0\\0 & 0&0&0&0\\0 & 0&0&0&0 \end{pmatrix}

Dann hätte man nen char Polynom mit x4(x-1), also x1 = 1 und x2 = 0 für die Eigenwerte und somit wäre dann x1 algebraisch und geometrisch gleich und bei x2 algebraisch 4 und geometrisch 1. Wie aber verhält es sich jetzt mit dimk(V), entspricht das für ℝnxn dimK(V) = n oder dimK(V) = n - Rang(M) oder vll was ganz anderes?

Avatar von
dimK(V) einer Matrix

Heisst die Matrix V? Oder Dimension wovon?

V steht für den Vektorraum und für die Matrix habe ich M genommen.

In dem Fall ist meine Frage: Welcher Vektorraum und welcher Körper? Und wovon suchst du die Dimension?

Um ehrlich zu sein ist das auch mein Problem, ich weiss wie oben beschrieben eigentlich nur, das dimK(V) = 4 ist, wie genau ich das jetzt anwenden muss weiss ich leider nicht, ich habe im Internet noch so eine Seite gefunden https://www.massmatics.de/merkzettel/#!329:Dimension

demnach wäre mit dimk(V) = n - Rg(M) = 5 - 1 = 4, aber weiss nicht ob das für mich zutreffend ist.

In deinem Link steht z.B.

Skärmavbild 2019-06-20 kl. 12.12.09.png

Somit ist V der Kern der Abbildung, die zur Matrix A gehört.

Etwas weiter unten kann man vermuten, dass K in deiner Aufgabe der Kern der Abbildung.

In diesem Zusammenhang passt dann die Formel

Dim_(Kern(A)) = n - Rang(A)

tatsächlich ungefähr. Falls der Link zu deinen offiziellen Unterlagen führt, kannst du das so rechnen.

Ein anderes Problem?

Stell deine Frage