0 Daumen
663 Aufrufe
Ich soll den Parameter der Geradengleichung so bestimmen, dass die Gerade den Graphen von f berührt und ich soll die Koordinaten des Berührpunktes bestimmen.

f(x) = 4x² + 3x + 2

g(x) = -3x + c

ein Parameter ist ja ein Unbekannter soweit ich weis in einer Geradenglei. m und b

aber wie soll ich ihn bestimmen wenn er schon gegeben ist, dann müsste ich ja eig. nur den Berührpunkt ausrechnen mit der Formel b² - 4ac oder ?

sehe ich das falsch, oder gibt es einen anderen Lösungsweg?
Gefragt von

1 Antwort

0 Daumen

Wenn die Gerade g den Graphen von f berühren soll, muss die Differenz

d(x) = f(x)-g(x) eine doppelte Nullstelle haben.

d(x) = 4x2+3x+2+3x-c = 4x2+6x+2-c

d(x) = 0 ⇔ 4x2+6x+2-c = 0

x1/2 = -3/4±√(1+4c)/4.

x1 = x2 ⇔ 1+4c = 0 ⇔ c = -1/4.

Also ist für c = -1/4 B(-3/4|f(-3/4)) Berührpunkt.

Beantwortet von

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage sofort und kostenfrei

x
Made by a lovely community
...