0 Daumen
200 Aufrufe

Kann mir jemand bei der Aufgabe helfen und mir sagen, welches Beweisverfahren am besten passt und vor allem wie der dazugehörige Lösungsweg gehen könnte?


Sein \( a, b, c \in \mathbb{N} /\{1\} \) Dann gilt: \[ a = b \cdot c \rightarrow(a>b \wedge a>c) \]

von

1 Antwort

0 Daumen

Aloha :)

$$a=b\cdot c=b\cdot(1+c-1)=b+\underbrace{b}_{\ge2}\cdot\underbrace{(c-1)}_{\ge1}>b$$$$a=b\cdot c=(1+b-1)\cdot c=c+\underbrace{(b-1)}_{\ge1}\cdot\underbrace{c}_{\ge2}>c$$

von 131 k 🚀

Vielen Dank!

Ein anderes Problem?

Stell deine Frage

Ähnliche Fragen

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community