NUn dann setzen wir
fo(x) : =akx
und setzen ein fo(X(j))=Y(j), X={1,2,3,4,5,6,7,8,9}
Fxy : ={ak=8,ak2=1089,ak3=548,ak4=553,ak5=10117,ak6=13,ak7=571,ak8=578,ak9=10171}
∑j=19(fo(X(j))−Y(j))2
=Q : =a2k18+a2k16+a2k14+a2k12+a2k10+a2k8+a2k6+a2k4+a2k2−34.2ak9−31.2ak8−28.4ak7−26ak6−23.4ak5−21.2ak4−19.2ak3−17.8ak2−16ak+1391.03
dQ:={Derivative(Q,a ),Derivative(Q,k)}
dQ : ={2ak18+2ak16+2ak14+2ak12+2ak10−5171k9+2ak8−5156k8−5142k7+2ak6−26k6−5117k5+2ak4−5106k4−596k3+2ak2−589k2−16k,18a2k17+16a2k15+14a2k13+12a2k11+10a2k9−51539ak8+8a2k7−51248ak7−5994ak6+6a2k5−156ak5−117ak4+4a2k3−5424ak3−5288ak2+2a2k−5178ak−16a}
Solve(dQ,{a,k})
{{a=0,k=0},{a=7.28716,k=1.09973},{a=−2.55061,k=−0.79338}}