0 Daumen
375 Aufrufe

Finden Sie alle potentiellen lokalen Extrema der Funktion

f : Rn → R, f(x) = x1 · x2 · . . . · xn auf der Menge {x ∈ Rn: x1 + . . . + xn = 1, xi > 0 für 1 ≤ i ≤ n}.


Zeigen Sie mit Hilfe von Teil (a), dass

\( \sqrt[n]{x1 · x2 · . . . · xn } \) ≤ (x1 + . . . + xn) / n für alle x1, . . . , xn ≥ 0 gilt

Avatar von

1 Antwort

0 Daumen

Aloha :)

Wir suchen das Maximum der Funktion \(f:\mathbb R^n\to\mathbb R\) unter der Nebenbedingung \(g\):$$f(\vec x)=x_1\cdot x_2\cdots x_n\quad;\quad g(\vec x)=x_1+x_2+\cdots x_n-c=0\quad;\quad x_k>0$$Beachte bitte, dass wir hier für die Summe der \(x_k\) eine beliebige Konstante \(c>0\) zugelassen haben. In der Aufgabenstellung ist das eingeschränkt auf \(c=1\). Nach Lagrange müssen im Extremum die Graidenten von \(f\) und von \(g\) bis auf einen Faktor \(\lambda\) gleich sein:

$$\operatorname{grad}f=\lambda\operatorname{grad}g\implies\begin{pmatrix}f/x_1\\f/x_2\\f/x_3\\\vdots\\f/x_n\end{pmatrix}=\lambda\begin{pmatrix}c\\c\\c\\\vdots\\c\end{pmatrix}\implies\frac{f}{x_k}=\lambda c\implies x_k=\frac{f}{\lambda c}$$Kritische Punkte sind also diejenigen, bei denen alle \(x_k\) gleich sind. Setzen wir dies in die Nebenbedinung ein, erhalten wir ein mögliches Extremum bei$$x_1=x_2=x_3=\cdots=x_n=\frac{c}{n}=\overline x\quad;\quad f_\text{Extremum}=\overline x^n=\frac{c^n}{n^n}$$wenn also alle \(x_k\) gleich ihrem Mittelwert \(\overline x=\frac{1}{n}\) sind.

Wir müssen noch prüfen, ob für diese \(x_k=\frac{c}{n}\) tatsächlich ein Extremum vorliegt und von welchem Typ dieses ist. Dazu reduzieren wir \(x_1\) um einen Wert \(\varepsilon<\frac{c}{n}\) und erhöhen \(x_n\) entsprechend, damit die Summe aller \(x_k\) weiterhin \(c\) bleibt. Für deren Produkt gilt dann:

$$\prod\limits_{k=1}^n x_k=x_1\cdot\prod\limits_{k=2}^{n-1} x_k\cdot x_n=\left(\frac{c}{n}-\varepsilon\right)\cdot\prod\limits_{k=2}^{n-1}\frac{c}{n}\cdot\left(\frac{c}{n}+\varepsilon\right)=\frac{c^{n-2}}{n^{n-2}}\cdot\left(\frac{c^2}{n^2}-\varepsilon^2\right)$$$$\phantom{\prod\limits_{k=1}^n x_k}=\frac{c^n}{n^n}-\frac{c^{n-2}}{n^{n-2}}\,\varepsilon^2<\left(\frac{c}{n}\right)^n=\overline x^n$$Die Funktion \(f(\vec x)\) erreicht also ein Maximum, wenn alle Komponenten \(x_k\) gleich groß sind. Das heißt:

$$x_1\cdot x_2\cdots x_n\le\left(\frac{c}{n}\right)^n=\left(\frac{x_1+x_2+\cdots x_n}{n}\right)^n\quad;\quad x_k>0\;;\;c=\text{const}>0$$Diese Ungleichung bleibt sogar richtig, wenn ein oder mehrere \(x_k=0\) werden. Ziehen wir noch auf beiden Seiten die \(n\)-te Wurzel, erhalten wir:$$\sqrt[n]{x_1\cdot x_2\cdots x_n}\le\frac{x_1+x_2+\cdots +x_n}{n}\quad;\quad x_k\ge0$$

Avatar von 148 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community