Aufgabe:
Grenzwert mit cot berechnen
Problem/Ansatz:
Es soll der Grenzwert von cot^2(17x^5)-1/(289x^10) berechnet werden, wenn x->0.
Ich komm bei dem Bsp überhaupt nicht weiter. Ich weiß, dass cot(x)=cos(x)/sin(x) definiert ist. Eventuell kann ich das Bsp mit der Regel von L'Hospital lösen?
Mache erst mal die beiden Brüche (Minuend und Subtrahend) gleichnamig.
(cos^2(17x^5)*289x^10-sin^2(17x^5))/(sin^2(17x^5)*289x^10)
?
Ein anderes Problem?
Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos